一、大数据分析工具——Hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
二、大数据分析工具——思迈特软件 Smartbi
融合传统 BI、自助 BI、智能 BI,满足 BI 定义所有阶段的需求;提供数据连接、数据准备、数据分析、数据应用等全流程功能;提供复杂报表、数据可视化、自助探索分析、机器学习建模、预测分析、自然语言分析等全场景需求;满足数据角色、分析角色、管理角色等所有用户的需求。
三、大数据分析工具——Bokeh
这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供 Python 语言使用。
四、大数据分析工具——Storm
Storm 是自由的开源软件,一个分布式的、容错的实时计算系统。Storm 可以非常可靠的处理庞大的数据流,用于处理 Hadoop 的批量数据。Storm 很简单,支持许多种编程语言,使用起来非常有趣。Storm 由 Twitter 开源而来,其它知名的应用企业包括 Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster 等等。
五、大数据分析工具—— Plotly
这是一款数据可视化工具,可兼容 JavaScript、MATLAB、Python 以及 R 等语言。Plotly 甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。
六、大数据分析工具——Pentaho BI
Pentaho BI 平台不同于传统的 BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级 BI 产品、开源软件、API 等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如 Jfree、Quartz 等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。