两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

为何地图上的航线是曲线如果我们观察地图上的航线,就会发现航线是弯曲的。基本上可以认为地球是个球体,如果飞机在两个城市之间飞行,最好的飞行线路是取这两个城市之间的最短距离。这其实课看成球面上任意两点之间

为何地图上的航线是曲线

如果我们观察地图上的航线,就会发现航线是弯曲的。

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

基本上可以认为地球是个球体,如果飞机在两个城市之间飞行,最好的飞行线路是取这两个城市之间的最短距离。这其实课看成球面上任意两点之间的最短距离。过球面上的任意两点以及球心可以做一个截平面,与球面的截痕为一个圆,这个圆的大小不随两点不同而变化,半径都是球半径。这个圆是任意平面与球面相截得到的所有不同的圆中,半径最大的,因此叫做大圆。而只要你沿着球表面做线连接任意两个点,曲线长度最短的一定是这个大圆的劣弧长度。航线按两个城市之间的大圆弧航行才最经济。地图是球面向平面做投影做出来的,所以我们看到的航线就是曲线了。

定理:球面上任意两点间的距离以大圆最短

初等几何的观察

如图AB是连接A,B两点的大圆弧,C是AB弧上的任意一点,过C做以A,B为极点的圆,设AF,GF,GB为一条球面曲线,且BG是大圆弧,AF也是大圆弧

则CB=BG,AC=AF,但AF+FG+GB>AF+GB=AC+CB=AB.

如果B,E,D,A是另外一条球面上的曲线,过B,D,A的球面三角形中AD+BD>AB,

过E,B,A的球面三角形中亦有BE+AE>AB。

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

微积分证明

下面我们利用球面坐标系与微积分给出一个精确的证明。

令A,B是半径为R的球面上的任意两点,C为球心,大圆弧长可以表达为

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

以C为中心建立直角坐标系,让A在z轴上,则球面上任意一点P的坐标可以写成:

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

空间中任意曲线的长度可以定义为:

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

其中s是参数,对球面曲线就有

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

所以

两点之间的距离两点之间什么最短(两点之间线段最短如何证明)

上式严格成立,也就是要求不论s取值如何都不能离开大圆弧AB时等式严格成立,这就证明了球面上两点的最短距离为大圆弧。这个距离被高斯称为球面测地线。

本站部分文章来自网络或用户投稿,如无特殊说明或标注,均为本站原创发布。涉及资源下载的,本站旨在共享仅供大家学习与参考,如您想商用请获取官网版权,如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
投稿

祭拜与祭祀的区别(祭拜和祭奠的意思)

2022-12-12 23:43:07

投稿

平方千米和平方公里怎么换算(一平方公里等于多少平方米)

2022-12-12 23:43:49

搜索